资源类型

期刊论文 281

会议视频 3

年份

2024 1

2023 30

2022 27

2021 28

2020 23

2019 17

2018 11

2017 11

2016 8

2015 14

2014 13

2013 8

2012 10

2011 13

2010 8

2009 10

2008 10

2007 13

2006 7

2005 5

展开 ︾

关键词

力学性能 8

力学模型 2

微机电系统 2

数值模拟 2

斜拉桥 2

机械性能 2

机械结构 2

现场监测 2

/III-V界面 1

2021全球工程前沿 1

3-DR-IUD 1

3D打印 1

5G 1

60 GHz;封装天线;共面波导馈电环形谐振器;玻璃集成无源器件;超表面天线;小型化天线 1

ANSYS 1

DNA结构 1

EBSD 1

EDI 1

FRP 聚合物 1

展开 ︾

检索范围:

排序: 展示方式:

Design method and verification of a hybrid prosthetic mechanism with energy-damper clutchable device

《机械工程前沿(英文)》 2021年 第16卷 第4期   页码 747-764 doi: 10.1007/s11465-021-0644-4

摘要: Transfemoral amputees (TAs) have difficulty in mobility during walking, such as restricted movement of lower extremity and body instability, yet few transfemoral prostheses have explored human-like multiple motion characteristics by simple structures to fit the kinesiology, biomechanics, and stability of human lower extremity. In this work, the configurations of transfemoral prosthetic mechanism are synthesized in terms of human lower-extremity kinesiology. A hybrid transfemoral prosthetic (HTP) mechanism with multigait functions is proposed to recover the gait functions of TAs. The kinematic and mechanical performances of the designed parallel mechanism are analyzed to verify their feasibility in transfemoral prosthetic mechanism. Inspired by motion–energy coupling relationship of the knee, a wearable energy-damper clutched device that can provide energy in knee stance flexion to facilitate the leg off from the ground and can impede the leg’s swing velocity for the next stance phase is proposed. Its co-operation with the springs in the prismatic pairs enables the prosthetic mechanism to have the energy recycling ability under the gait rhythm of the knee joint. Results demonstrate that the designed HTP mechanism can replace the motion functions of the knee and ankle to realize its multimode gait and effectively decrease the peak power of actuators from 94.74 to 137.05 W while maintaining a good mechanical adaptive stability.

关键词: hybrid transfemoral prosthetic mechanism     energy recycling     wearable mechanical clutched device     mechanical adaptive stability    

Multifunctional, Wearable, and Wireless Sensing System via Thermoelectric Fabrics

Xinyang He,Jiaxin Cai,Mingyuan Liu,Xuepeng Ni,Wendi Liu,Hanyu Guo,Jianyong Yu,Liming Wang,Xiaohong Qin,

《工程(英文)》 doi: 10.1016/j.eng.2023.05.026

摘要: Flexible thermoelectric materials play an important role in smart wearables, such as wearable power generation, self-powered sensing, and personal thermal management. However, with the rapid development of Internet of Things (IoT) and artificial intelligence (AI), higher standards for comfort, multifunctionality, and sustainable operation of wearable electronics have been proposed, and it remains challenging to meet all the requirements of currently reported thermoelectric devices. Herein, we present a multifunctional, wearable, and wireless sensing system based on a thermoelectric knitted fabric with over 600 mm·s−1 air permeability and a stretchability of 120%. The device coupled with a wireless transmission system realizes self-powered monitoring of human respiration through an mobile phone application (APP). Furthermore, an integrated thermoelectric system was designed to combine photothermal conversion and passive radiative cooling, enabling the characteristics of being powered by solar-driven in-plane temperature differences and monitoring outdoor sunlight intensity through the APP. Additionally, we decoupled the complex signals of resistance and thermal voltage during deformation under solar irradiation based on the anisotropy of the knitted fabrics to enable the device to monitor and optimize the outdoor physical activity of the athlete via the APP. This novel thermoelectric fabric-based wearable and wireless sensing platform has promising applications in next-generation smart textiles.

关键词: Thermoelectric fabrics     Wearable device     Wireless     Multifunctional sensing system     Outdoor wearable signal monitoring    

Wearable thermal energy harvester powered by human foot

Guodong XU, Yang YANG, Yixin ZHOU, Jing LIU

《能源前沿(英文)》 2013年 第7卷 第1期   页码 26-38 doi: 10.1007/s11708-012-0215-9

摘要: With explosive applications of many advanced mobile electronic devices, a pervasive energy system with long term sustainability becomes increasingly important. Among the many efforts ever tried, human power is rather unique due to its independence of weather or geographical conditions and is therefore becoming a research focus. This paper is dedicated to demonstrate the possibility and feasibility of harvesting thermal energy from human body by sandwiching a thermoelectric generator (TEG) between human shoe bottom and ground, aiming to power a portable electronic device. Through the conceptual experiments conducted on adults, a maximum 3.99 mW steady state power output at a ground temperature with 273 K is obtained, which is sufficient enough to drive a lot of micro-electronic devices. Also, parametric simulations are performed to systematically clarify the factors influencing the TEG working performance. To further reveal the mechanism of this power generation modality, analytical solutions to the coupled temperature distributions for human foot and TEG module are obtained and the correlation between TEG characteristics and the output power are studied. It was demonstrated that, the TEG working as a wearable power resource by utilizing thermal energy of human foot shows enormous potential and practical values either under normal or extreme conditions.

关键词: human power     thermal energy     energy harvesting     micro power     wearable device    

Personalized biomedical devices & systems for healthcare applications

I-Ming CHEN, Soo Jay PHEE, Zhiqiang LUO, Chee Kian LIM

《机械工程前沿(英文)》 2011年 第6卷 第1期   页码 3-12 doi: 10.1007/s11465-011-0209-z

摘要:

With the advancement in micro- and nanotechnology, electromechanical components and systems are getting smaller and smaller and gradually can be applied to the human as portable, mobile and even wearable devices. Healthcare industry have started to benefit from this technology trend by providing more and more miniature biomedical devices for personalized medical treatments in order to obtain better and more accurate outcome. This article introduces some recent development in non-intrusive and intrusive biomedical devices resulted from the advancement of niche miniature sensors and actuators, namely, wearable biomedical sensors, wearable haptic devices, and ingestible medical capsules. The development of these devices requires carful integration of knowledge and people from many different disciplines like medicine, electronics, mechanics, and design. Furthermore, designing affordable devices and systems to benefit all mankind is a great challenge ahead. The multi-disciplinary nature of the R&D effort in this area provides a new perspective for the future mechanical engineers.

关键词: personalized medical devices     wearable sensor     haptic device     ingestible medical capsule    

可穿戴式汗液传感器

Elizabeth K. Wilson

《工程(英文)》 2019年 第5卷 第3期   页码 359-360 doi: 10.1016/j.eng.2019.04.008

A systematic graph-based method for the kinematic synthesis of non-anthropomorphic wearable robots for

Fabrizio SERGI, Dino ACCOTO, Nevio L. TAGLIAMONTE, Giorgio CARPINO, Eugenio GUGLIELMELLI

《机械工程前沿(英文)》 2011年 第6卷 第1期   页码 61-70 doi: 10.1007/s11465-011-0206-2

摘要:

The choice of non-anthropomorphic kinematic solutions for wearable robots is motivated both by the necessity of improving the ergonomics of physical Human-Robot Interaction and by the chance of exploiting the intrinsic dynamical properties of the robotic structure so to improve its performances. Under these aspects, this new class of robotic solutions is potentially advantageous over the one of anthropomorphic robotic orthoses. However, the process of kinematic synthesis of non-anthropomorphic wearable robots can be too complex to be solved uniquely by relying on conventional synthesis methods, due to the large number of open design parameters. A systematic approach can be useful for this purpose, since it allows to obtain the complete list of independent kinematic solutions with desired properties. In this perspective, this paper presents a method, which allows to generalize the problem of kinematic synthesis of a non-anthropomorphic wearable robot for the assistance of a specified set of contiguous body segments. The methodology also includes two novel tests, specifically devised to solve the problem of enumeration of kinematic structures of wearable robots: the HR-isomorphism and the HR-degeneracy tests. This method has been implemented to derive the atlas of independent kinematic solutions suitable to be used for the kinematic design of a planar wearable robot for the lower limbs.

关键词: assistive robotics     non-anthropomorphic wearable robots     topology     kinematic synthesis     HR-isomorphism test     HR-degeneracy test    

Efficient detection methods for amplify-and-forward relay-aided device-to-device systems with full-rate Article

Kang-li ZHANG, Cong ZHANG, Fang-lin GU, Jian WANG

《信息与电子工程前沿(英文)》 2017年 第18卷 第6期   页码 788-795 doi: 10.1631/FITEE.1700018

摘要: 中继辅助设备到设备通信是下一代蜂窝网络中一项极具潜力的技术。研究了适用于配置多天线的放大转发中继辅助设备到设备通信系统的不同传输方案。为了解决基于全速率空时块码传输方案的传统最大似然检测算法复杂度高的问题,文中提出两种低复杂度检测方法,分别为采用最大似然合并算法的检测方法和采用联合条件最大似然检测器的检测方法。特别是,所提的基于联合条件最大似然检测器的检测方法,能够通过牺牲一定的存储空间换取较好的并行处理能力。仿真结果表明:针对采用全速率空时块码传输方案提出的两种检测方法,能够获得与传统最大似然检测方法近乎相同的误符号率,但所提检测方法复杂度更低;同时,采用基于全速率空时块码的传输方案比复用传输方案具有更优的误码性能。仿真结果还进一步验证了对所提检测方法的分集增益分析。

关键词: 设备到设备通信;中继;检测;全速率空时块码    

Evaluation of the power-generation capacity of wearable thermoelectric power generator

Yang YANG, Jing LIU,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 346-357 doi: 10.1007/s11708-010-0112-z

摘要: Employing thermoelectric generators (TEGs) to gather heat dissipating from the human body through the skin surface is a promising way to supply electronic power to wearable and pocket electronics. The uniqueness of this method lies in its direct utilization of the temperature difference between the environment and the human body, and complete elimination of power maintenance problems. However, most of the previous investigations on thermal energy harvesters are confined to the TEG and electronic system themselves because of the low quality of human energy. We evaluate the energy generation capacity of a wearable TEG subject to various conditions based on biological heat transfer theory. Through numerical simulation and corresponding parametric studies, we find that the temperature distribution in the thermopiles affects the criterion of the voltage output, suggesting that the temperature difference in a single point can be adopted as the criterion for uniform temperature distribution. However, the criterion has to be shifted to the sum of temperature difference on each thermocouple when the temperature distribution is inconsistent. In addition, the performance of the thermal energy harvester can be easily influenced by environmental conditions, as well as the physiological state and physical characteristics of the human body. To further validate the calculation results for the wearable TEG, a series of conceptual experiments are performed on a number of typical cases. The numerical simulation provides a good overview of the electricity generation capability of the TEG, which may prove useful in the design of future thermal energy harvesters.

关键词: thermal energy harvester     thermoelectric generator     biological heat transfer     power generating capacity    

Experiment and optimal design of a collection device for a residual plastic film baler

Qi NIU,Xuegeng CHEN,Chao JI,Jie WU

《农业科学与工程前沿(英文)》 2015年 第2卷 第4期   页码 347-354 doi: 10.15302/J-FASE-2015077

摘要: It is imperative to carry out research on residual plastic film collection technology to solve the serious problem of farmland pollution. The residual plastic film baler was designed as a package for film strip collection, cleaning and baling. The collection device is a core component of the baler. Response surface analysis was used in this study to optimize the structure and working parameters for improving the collection efficiency of residual film and the impurity of film package. The results show that the factors affecting the collection rate of residual film and the impurity of the film package are the speed ratio ( ) between the trash removal roller and eccentric collection mechanism, the number ( ) and the mounting angle ( ) of spring teeth in the same revolution plane. For the collection rate, the importance of the three factors are in the order, . Meanwhile, for the impurity, the importance of three factors are in the order, . When the speed ratio, the mounting angle and the number of spring teeth was set at 1.6°, 45°, and 8°, respectively, the collection rate of residual film was 88.9% and the impurity of residual film package was 14.2% for the baler.

关键词: residual film     collection device     collection rate of residual film     impurity of film package     optimization     baler    

A low cost wearable optical-based goniometer for human joint monitoring

Chee Kian LIM, Zhiqiang LUO, I-Ming CHEN, Song Huat YEO

《机械工程前沿(英文)》 2011年 第6卷 第1期   页码 13-22 doi: 10.1007/s11465-011-0201-7

摘要:

Widely used in the fields of physical and occupational therapy, goniometers are indispensible when it comes to angular measurement of the human joint. In both fields, there is a need to measure the range of motion associated with various joints and muscle groups. For example, a goniometer may be used to help determine the current status of the range of motion in bend the arm at the elbow, bending the knee, or bending at the waist. The device can help to establish the range of motion at the beginning of the treatment series, and also allow the therapist to monitor progress during subsequent sessions. Most commonly found are the mechanical goniometers which are inexpensive but bulky. As the parts are mechanically linked, accuracy and resolution are largely limited. On the other hand, electronic and optical fiber-based goniometers promise better performance over its mechanical counterpart but due to higher cost and setup requirements does not make it an attractive proposition as well. In this paper, we present a reliable and non-intrusive design of an optical-based goniometer for human joint measurement. This device will allow continuous and long-term monitoring of human joint motion in everyday setting. The proposed device was benchmarked against mechanical goniometer and optical based motion capture system to validate its performance. From the empirical results, it has been proven that this design can be use as a robust and effective wearable joint monitoring device.

关键词: optical     goniometer     human-joint measurement    

医疗器械与新型穿戴式医疗设备的发展战略研究

程京,邢婉丽

《中国工程科学》 2017年 第19卷 第2期   页码 68-71 doi: 10.15302/J-SSCAE-2017.02.011

摘要:

医疗器械领域涉及国计民生,发展潜力巨大,但我国医疗器械产业中低端产品较多,高端产品缺乏原创性,发展面临重重困难和挑战。作为快速增长的新兴技术领域,发展新型穿戴式医疗设备具有重要意义。为此,中国工程院启动了“我国全民健康与医药卫生事业发展战略研究”重大咨询项目,其中“医疗器械与新型穿戴式医疗设备的发展战略研究”作为八个重点课题之一,围绕医疗器械与新型穿戴式医疗设备的发展现状和战略需求,研究我国医疗器械产业与新型穿戴式医疗设备领域的现状及特点,分析我国医疗器械国产化与新型穿戴式医疗设备领域健康发展的关键问题,研究该领域的相关政策,理清我国医疗器械发展过程中的重点问题、需求、已有优势和特点,并在此基础上提出了对策建议。

关键词: 医疗器械     产业分析     可穿戴设备     发展战略    

用于可穿戴式人体助力和运动康复的人工肌肉 Review

Tian-yun DONG, Xiang-liang ZHANG, Tao LIU

《信息与电子工程前沿(英文)》 2018年 第19卷 第11期   页码 1303-1315 doi: 10.1631/FITEE.1800618

摘要: 传统外骨骼在可穿戴式人体助力和运动康复领域做出巨大贡献。然而,外骨骼仍然面临一些挑战,如质量大、结构复杂、刚度高、噪音大,且关节处有固定旋转中心,给老年人和肌肉虚弱者带来使用困难。相反,基于柔性智能材料的人工肌肉具有质量轻、结构紧凑、刚度低和静音驱动等特性,被认为是与天然肌肉最相似的材料。介电弹性体(dielectric elastomers,DE)和聚氯乙烯(polyvinyl chloride,PVC)凝胶致动应变和致动应力大,响应速度快,驱动寿命长,在可穿戴式人体助力和运动康复领域具有很大应用潜力。然而,这两种材料在这些领域少有研究。在这篇综述中,我们首先分别介绍DE和PVC凝胶的工作原理。接着,总结常用DE材料和PVC凝胶材料。然后,回顾这两种材料所需要的驱动电极和自传感系统。最后,介绍这两种材料在可穿戴式人体助力和运动康复领域的初步应用。

关键词: 人工肌肉;智能材料;介电弹性体(DE);聚氯乙烯(PVC)凝胶;执行器;可穿戴式人体助力;运动康复    

A novel flow electrode capacitive deionization device with spindle-shaped desalting chamber

《环境科学与工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11783-024-1800-y

摘要:

● A spindle-shaped influent chamber was designed and equipped in FCDI system.

关键词: Spindle-shaped chamber     Desalination performance     Flow electrode capacitive deionization    

Enhancing power generation of piezoelectric bimorph device through geometrical optimization

Action NECHIBVUTE,Albert CHAWANDA,Pearson LUHANGA

《能源前沿(英文)》 2015年 第9卷 第2期   页码 246-246 doi: 10.1007/s11708-015-0360-z

Development of rocking constraint device with vertical damping capacity for three-dimensional base-isolated

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 350-367 doi: 10.1007/s11709-022-0923-0

摘要: A new rocking constraint device (RCD) is developed for three-dimensional (3D) base-isolated frame structures by connecting a custom-designed cylinder pair to provide vertical damping with replaceable damping components installed outside the cylinders when the superstructure undergoes translational motion, and rocking constraint capacity when the superstructure is susceptible to rocking. Theoretical formulas for calculating the damping and rocking constraint stiffness of the RCD are proposed. Two series of sinusoidal loading tests are conducted at different loading frequencies and amplitudes to verify the damping and rocking constraint performance of the RCD. The test results show that the cylinder without orifices on its piston can provide the desired damping with a replaceable damping component, and that the RCD can effectively suppress rocking. Although the vertical stiffness of an individual cylinder is affected by the location of the replaceable damping component and loading frequency, the average vertical stiffness of the two cylinders, which determines the rocking constraint stiffness of the RCD, is independent of the two factors. Comparisons of the test and theoretical results indicate that the errors of the proposed formulas for calculating the damping and rocking constraint stiffness of the RCD do not exceed 12.9% and 11.0%, respectively.

关键词: three-dimensional isolation     rocking behavior     rocking constraint device     replaceable damping component     sinusoidal test    

标题 作者 时间 类型 操作

Design method and verification of a hybrid prosthetic mechanism with energy-damper clutchable device

期刊论文

Multifunctional, Wearable, and Wireless Sensing System via Thermoelectric Fabrics

Xinyang He,Jiaxin Cai,Mingyuan Liu,Xuepeng Ni,Wendi Liu,Hanyu Guo,Jianyong Yu,Liming Wang,Xiaohong Qin,

期刊论文

Wearable thermal energy harvester powered by human foot

Guodong XU, Yang YANG, Yixin ZHOU, Jing LIU

期刊论文

Personalized biomedical devices & systems for healthcare applications

I-Ming CHEN, Soo Jay PHEE, Zhiqiang LUO, Chee Kian LIM

期刊论文

可穿戴式汗液传感器

Elizabeth K. Wilson

期刊论文

A systematic graph-based method for the kinematic synthesis of non-anthropomorphic wearable robots for

Fabrizio SERGI, Dino ACCOTO, Nevio L. TAGLIAMONTE, Giorgio CARPINO, Eugenio GUGLIELMELLI

期刊论文

Efficient detection methods for amplify-and-forward relay-aided device-to-device systems with full-rate

Kang-li ZHANG, Cong ZHANG, Fang-lin GU, Jian WANG

期刊论文

Evaluation of the power-generation capacity of wearable thermoelectric power generator

Yang YANG, Jing LIU,

期刊论文

Experiment and optimal design of a collection device for a residual plastic film baler

Qi NIU,Xuegeng CHEN,Chao JI,Jie WU

期刊论文

A low cost wearable optical-based goniometer for human joint monitoring

Chee Kian LIM, Zhiqiang LUO, I-Ming CHEN, Song Huat YEO

期刊论文

医疗器械与新型穿戴式医疗设备的发展战略研究

程京,邢婉丽

期刊论文

用于可穿戴式人体助力和运动康复的人工肌肉

Tian-yun DONG, Xiang-liang ZHANG, Tao LIU

期刊论文

A novel flow electrode capacitive deionization device with spindle-shaped desalting chamber

期刊论文

Enhancing power generation of piezoelectric bimorph device through geometrical optimization

Action NECHIBVUTE,Albert CHAWANDA,Pearson LUHANGA

期刊论文

Development of rocking constraint device with vertical damping capacity for three-dimensional base-isolated

期刊论文